博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Mahout算法集
阅读量:6278 次
发布时间:2019-06-22

本文共 1045 字,大约阅读时间需要 3 分钟。

在Mahout实现的机器学习算法见下表

算法类

算法名

中文名

分类算法

Logistic Regression

逻辑回归

Bayesian

贝叶斯

SVM

支持向量机

Perceptron

感知器算法

Neural Network

神经网络

Random Forests

随机森林

Restricted Boltzmann Machines

有限波尔兹曼机

聚类算法

Canopy Clustering

Canopy聚类

K-means Clustering

K均值算法

Fuzzy K-means

模糊K均值

Expectation Maximization

EM聚类(期望最大化聚类)

Mean Shift Clustering

均值漂移聚类

Hierarchical Clustering

层次聚类

Dirichlet Process Clustering

狄里克雷过程聚类

Latent Dirichlet Allocation

LDA聚类

Spectral Clustering

谱聚类

关联规则挖掘

Parallel FP Growth Algorithm

并行FP Growth算法

回归

Locally Weighted Linear Regression

局部加权线性回归

降维/维约简

Singular Value Decomposition

奇异值分解

Principal Components Analysis

主成分分析

Independent Component Analysis

独立成分分析

Gaussian Discriminative Analysis

高斯判别分析

进化算法

并行化了Watchmaker框架

 

推荐/协同过滤

Non-distributed recommenders

Taste(UserCF, ItemCF, SlopeOne)

Distributed Recommenders

ItemCF

向量相似度计算

RowSimilarityJob

计算列间相似度

VectorDistanceJob

计算向量间距离

非Map-Reduce算法

Hidden Markov Models

隐马尔科夫模型

集合方法扩展

Collections

扩展了java的Collections类

Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。

转载地址:http://lryva.baihongyu.com/

你可能感兴趣的文章
Spark修炼之道(进阶篇)——Spark入门到精通:第五节 Spark编程模型(二)
查看>>
一线架构师实践指南:云时代下双活零切换的七大关键点
查看>>
ART世界探险(19) - 优化编译器的编译流程
查看>>
玩转Edas应用部署
查看>>
music-音符与常用记号
查看>>
sql操作命令
查看>>
zip 数据压缩
查看>>
Python爬虫学习系列教程
查看>>
【数据库优化专题】MySQL视图优化(二)
查看>>
【转载】每个程序员都应该学习使用Python或Ruby
查看>>
PHP高级编程之守护进程,实现优雅重启
查看>>
PHP字符编码转换类3
查看>>
rsync同步服务配置手记
查看>>
http缓存知识
查看>>
Go 时间交并集小工具
查看>>
iOS 多线程总结
查看>>
webpack是如何实现前端模块化的
查看>>
TCP的三次握手四次挥手
查看>>
关于redis的几件小事(六)redis的持久化
查看>>
package.json
查看>>